1 Asymptotic normality of nonlinear least squares under singular experimental designs
نویسنده
چکیده
We study the consistency and asymptotic normality of the LS estimator of a function h(θ) of the parameters θ in a nonlinear regression model with observations yi = η(xi, θ) + εi, i = 1, 2 . . . and independent errors εi. Optimum experimental design for the estimation of h(θ) frequently yields singular information matrices, which corresponds to the situation considered here. The difficulties caused by such singular designs are illustrated by a simple example: depending on the true value of the model parameters and on the type of convergence of the sequence of design points x1, x2 . . . to the limiting singular design measure ξ, the convergence of the estimator of h(θ) may be slower than 1/ √ n, and, when convergence is at a rate of 1/ √ n and the estimator is asymptotically normal, its asymptotic variance may differ from that obtained for the limiting design ξ (which we call irregular asymptotic normality of the estimator). For that reason we focuss our attention on two types of design sequences: those that converge strongly to a discrete measure and those that correspond to sampling randomly from ξ. We then give assumptions on the limiting expectation surface of the model and on the estimated function h which, for the designs considered, are sufficient to ensure the regular asymptotic normality of the LS estimator of h(θ).
منابع مشابه
Asymptotic normality of nonlinear least squares under singular experimental designs
normality of nonlinear least squares under singular experimental designs. HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est...
متن کاملOn the regularization of singular c-optimal designs
We consider the design of c-optimal experiments for the estimation of a scalar function h(θ) of the parameters θ in a nonlinear regression model. A c-optimal design ξ∗ may be singular, and we derive conditions ensuring the asymptotic normality of the Least-Squares estimator of h(θ) for a singular design over a finite space. As illustrated by an example, the singular designs for which asymptotic...
متن کاملParameter Reduction of Nonlinear Least-Squares Estimates Via the Singular Value Decomposition
This paper proposes a technique for reducing the number of uncertain parameters in order to simplify robust and adaptive controller design. The system is assumed to have a known structure with parametric uncertainties that represent plant dynamics variation. An original set of parameters is identified by nonlinear least-squares (NLS) optimization using noisy frequency response functions. Based ...
متن کاملLinear Least Squares Estimates and Nonlinear Means
The consistency and asymptotic normality of a linear least squares estimate of the form (X,X)-X’Y when the mean is not X/I is investigated in this paper. The least squares estimate is a consistent estimate of the best linear approximation of the true mean function for the design chosen. The asymptotic normality of the least squares estimate depends on the design and the asymptotic mean may not ...
متن کاملAsymptotic theory of least squares estimator of a particular nonlinear regression model
The consistency and asymptotic normality of the least squares estimator are derived for a particular non-linear regression model, which does not satisfy the standard sufficient conditions of Jennrich (1969) or Wu (19811, under the assumption of normal errors.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009